

SAMXON BRAND ALUMINUM ELECTROLYTIC CAPACITORS PRODUCT SPECIFICATION 規格書

CUSTOMER: (客戶): 志盛翔

D

DATE: (日期):2017-07-03

CATEGORY (品名)	: ALUMINUM ELECTROLYTIC CAPACITORS
DESCRIPTION (型号)	: SF 10V1000μF(φ10x12.5)
VERSION (版本)	: 01
Customer P/N	:
SUPPLIER	:

SUPPLI	ER		CUS	ГOMER
PREPARED (拟定)			APPROVAL (批准)	SIGNATURE (签名)
李婷	刘渭清			

Г

T

		SPECIFICAT	ALTERN	ATION HIS CECORDS	TORY		
		SF SERIE					
Rev.	Date	Mark	Page	Contents	Purpose	Drafter	Approver

Name		Specification Sheet – SF		
Version	01		Page	1
	ST	ANDARD MANUAL		

MAN YUE ELECTRONICSELECTROLYTICCOMPANY LIMITEDSPECIFICATIONSF SERIESSF SERIES									S	AMX	ON			
Table	e 1 Product Dimensi	ons and	l Char	acteristic	s									
	Safety vent for $\geq \Phi$ 6.3 Unit: mm $\downarrow \downarrow \downarrow + \alpha$ $\downarrow \downarrow -1.0$ $\downarrow \downarrow + \alpha$ $\downarrow \downarrow 15 \min 4 \min$ $\downarrow \downarrow 15 \min 4 \min$ $\downarrow \downarrow \downarrow -1.0$ $\downarrow \downarrow \downarrow + \alpha$ $\downarrow \downarrow -1.0$ $\downarrow \downarrow \downarrow + \alpha$ $\downarrow \downarrow -1.0$ $\downarrow \downarrow -1.$													
Ta	ble 1	WV	Cap.	Cap.	Temp.	tan δ (120H	Leakage Current	Max Ripple Current at		er surface	Dime		lge fro	
0.	Part No.	(Vdc)	(μF)	tolerance	range (℃)	z, 20 ℃)	(µA,2mi n)	105℃ 100kHz (mA rms)	$\begin{array}{c} \text{at } 20 \text{ C} \\ 100 \text{kHz} \\ (\Omega \text{max}) \end{array}$	lifetime (Hrs)	D×L	F	фd	Sleeve
1	ESF108M1AG1BRR**P	10	1000	-20%~+20%	-40~105	0.19	100	865	0.080	5000	10X12.5	5.0	0.6	PET

Issued-date: 2017-07-03		Specification Sheet – SF		
Version	01	Pag	ige	2
		STANDARD MANUA	AL	

	C O N T E N T S	Sheet
1.	Application	4
2.	Part Number System	4
3.	Construction	5
4.	Characteristics	6~13
4.1	Rated voltage & Surge voltage	
4.2	Capacitance (Tolerance)	
4.3	Leakage current	
4.4	tan δ	
4.5	Impedance	
4.6	Terminal strength	
4.7	Temperature characteristic	
4.8	Load life test	
4.9	Shelf life test	
4.10	0 Surge test	
4.1	1 Vibration	
4.12	2 Solderability test	
4.1.	3 Resistance to solder heat	
4.14	4 Change of temperature	
	5 Damp heat test	
	Vent test	
	Maximum permissible (ripple current)	
	ist of "Environment-related Substances to be Controlled ('Controlled ubstances')"	14
	Attachment: Application Guidelines	15~20

Name		Specification Sheet –SF		
Version	01		Page	3
	STA	ANDARD MANUAL		

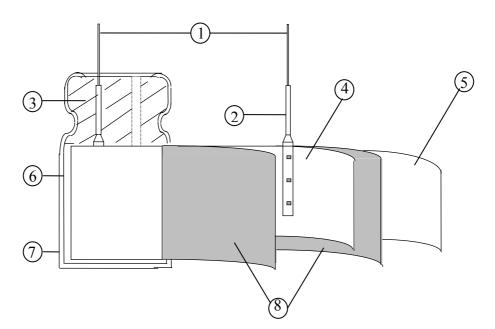
ELECTROLYTIC CAPACITOR SPECIFICATION SF SERIES

SAMXON

1. Application

This specification applies to polar Aluminum electrolytic capacitor (foil type) used in electronic equipment. Designed capacitor's quality meets IEC60384.

2. Pa	art Nu	ımb	er S	ystem								
12	3	4	5 6	3 7	·	89	[10 11 12	2 131	14	1516	17
EG	iS	1	0 5	5 IV		1 H		D11	— т (С	SA	Ρ
SERI	ES (CAPA	CITAN	СЕ ТО	L.	VOLTAGE		CASE SIZE	TYP	E	SAMXON	SLEEVE
I			1	I						1	PRODUCT LINE N	
Series	Gap(M		Code	Tolerance (%	Code	Voltage (W.V.)	Code	Case Size	Feature (Code	SAMXON Product	ino
ESM			104			2	0D	Diameter(Radial bulk	RR	For internal use only	
EKF ESS	⊒ —_'	0.1	104	±5	J	2.5	0E	3 B 3.5 1			(The product lines	
EKS EGS	-l (0.22	224	+ 10	к	4 6.3	0G 0J	3.5 1 4 C 5 D	Ammo Tap	ing	we have H,A,B,C,D E,M or 0,1,2,3,4,5,9	
EKM		0.33	334	±10		8	0K	6.3 E 8 F	2.0mm Pitch	TT	E, M OI 0, 1,2,0,4,0,0	″
EOM	'	0.35		±15	L	10	1A	8 F 10 G 12.5 I	2.0111111011		L	II
EZS	- 1	0.47	474			12.5 16	1B 1C	13 J 13.5 V	2.5mm Pitch	TU		
EGF ESF		1	105	±20	м	20	1D	14 4 14.5 A	3.5mm Pitch	тν	Sleeve Material	Code
EGT EGK	⊒				$\left - \right $	25	1E	16 K				
EGE		2.2	225	±30	N	30 32	1I 13	18 L	5.0mm Pitch	тс	PET	P
EGC		3.3	335	-40	 	35	1V	18.5 8 20 M 22 N 25 O 30 P 34 W 35 Q 40 R 42 4 45 6 51 S 63.5 T 76 U 80 8	Lead Cut &	Form		
ERF				ő	w	40	1G	20 M 22 N 25 O 30 P 34 W 35 Q	OP Tar	0.0		
ERR	-11-	4.7	475	-20 0	A	42 50	1M 1H	30 P 34 W	СВ-Туре	СВ		
ERE	1	10	106	0		57	1L	35 Q 40 R	CE-Type	CE		
ERD				-20 +10	c	63	1J	42 4 45 6	HE-Type	HE		
EBD	2	22	226			71 75	1S 1T	51 S	пс-туре			
ERB	3	33	336	-20 +40	×	80	1K	63.5 T 76 U	KD-Type	KD		
EFA ENP				-20 +50	s	85	1R	80 8 90 X 100 Z	FD-Type	FD	1	
ENH		17	476	+50		90	19 2A	Len.(mm) Code				
ERY	10	0	107	-10 0	в	120	20	4.5 45 5 05	EH-Type	EH		
EAP				-10		125	2B	5.4 54 7 07	PCB Term	nial		
EQP EDP	22	20	227	+20	V	150 160	2Z 2C					
EHP	33	30	337	-10	Q	180	2P	10.2 T2 11 11 11.5 1A		sw		
EUP	47	70	477	+30		200	2D	12 12 12.5 1B 13 13	Snap-in	sx		
EEP		<u> </u>		-10 +50	T	215 220	22 2N	13 13		sz		
ESP	220	0	228	-5 +10	E	230	23	13.5 1C 20 20 25 25		32		
EGP	2200	00	229			250	2E	29.5 2J	Lug	SG		
EWU	⊒⊢—			-5 +15	F	275 300	2T 2I	30 30 31.5 3A		05	L	
EWT	3300	0	339	-5 +20	G	310	2R	35.5 3E				
EWF	4700	0	479			315 330	2F 2U	50 50 80 80		06		
EWH	10000		107	0 +20	R	350	20 2V	100 1L 105 1K		т5		
EWB	10000	.0	10T	0 +30	0	360	2X	110 1M 120 1N	Screw	Te		
VNS VKS	15000	0	15T	+30		375 385	2Q 2Y	130 1P 140 1Q		т6		
VKM	22000		22T	+50	'	400	2G	150 1R 155 1E		D5		
VNH VZS				+5 +15	z	420	2M	160 1S 165 1F		D6		
VRF	33000	0	33T	+5		450 500	2W 2H	170 IT		- •	1	
	10000	000	10M	+20	D	550	25	180 1U 190 1V				
				+10 +50	Y	600	26	200 2L 215 2A				
	15000	000	15M	+10	н	630	2J	210 2M 220 2N				
	22000	000	22M	+30				240 2Q 250 2R				
								215 2A 210 2M 220 2N 240 2Q 250 2R 260 2S 270 2T				
.	33000	000	33M									


Name		Specification Sheet –SF		
Version	01		Page	4
	STA	ANDARD MANUAL		

ELECTROLYTIC CAPACITOR SPECIFICATION SF SERIES

SAMXON

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be impregnated with electrolyte will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber, then finished by putting on the vinyl sleeve.

No	Component	Material
1	Lead line	Tinned CP wire (Pb Free)
2	Terminal	Aluminum wire
3	Sealing Material	Rubber
4	Al-Foil (+)	Formed aluminum foil
5	Al-Foil (-)	Etched aluminum foil or formed aluminum foil
6	Case	Aluminum case
7	Sleeve	РЕТ
8	Separator	Electrolyte paper

Name		Specification Sheet –SF		
Version	01		Page	5
	STA	ANDARD MANUAL		

SAMXON

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature	:15°C to 35°C
Relative humidity	: 45% to 85%
Air Pressure	: 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:Ambient temperature: $20^{\circ}C \pm 2^{\circ}C$ Relative humidity: 60% to 70%Air Pressure: 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage See table 1 temperature range.

As to the detailed information, please refer to table 2

Name		Specification Sheet –SF					
Version	01		Page	6			
STANDARD MANUAL							

ELECTROLYTIC CAPACITOR SPECIFICATION SF SERIES

	ITEM			PE	RFORM	ANCE			
	Rated voltage (WV)	WV (V.DC) SV (V.DC)	6.3 8	10 13	16 20	25 32	35 44	50 63	63 79
4.1	Surge voltage (SV)	WV (V.DC) SV (V.DC)	100 125					1	
4.2	Nominal capacitance (Tolerance)	<condition> Measuring Free Measuring Vo Measuring Te <criteria> Shall be within</criteria></condition>	ltage mperatur	: Not e : 20±	2℃	n 0.5Vrms	3		
4.3	Leakage current	<condition> Connecting the minutes, and the <criteria> Refer to table</criteria></condition>	nen, meas				(1kΩ±	10Ω) in	series for 2
4.4	tan δ	<condition> See 4.2, Norm <criteria> Refer to tabl</criteria></condition>		nce, for r	neasuring	; frequenc	y, voltage	e and temp	perature.
	+	<condition></condition>			leasuring				

Name		Specification Sheet –SF				
Version	01		Page	7		
STANDARD MANUAL						

ELECTROLYTIC CAPACITOR SPECIFICATION SF SERIES

		\pm 1 seconds. Bending Strength of Termin Fixed the capacitor, applie	force to the terminal nals d force to bent the seconds, and then b	in lead out direction for 10 terminal $(1 \sim 4 \text{ mm from the bent it for 90° to its original}$		
4.6 Terminal		Diameter of lead wire	Tensile force N (kgf)	Bending force N (kgf)		
4.0	strength	0.5mm and less	5 (0.51)	2.5 (0.25)		
		Over 0.5mm to 0.8mm	10 (1.0)	5 (0.51)		
		<condition> STEP Testing Temperat</condition>	ure(°C) Time			
		$1 \qquad 20\pm 2$		ach thermal equilibrium		
		$2 -40(-25) \pm 100$		ach thermal equilibrium		
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Time to reach thermal equilibriumTime to reach thermal equilibrium			
		$\frac{4}{5}$ $\frac{103\pm2}{20\pm2}$		Time to reach thermal equilibrium		
4.7	Temperature characteristic	 <criteria></criteria> a. tan δ shall be within the li The leakage current meas value. b. In step 5, tan δ shall be wi The leakage current shall the leakage c	ured shall not more t thin the limit of Item			

Name		Specification Sheet –SF					
Version	01		Page	8			
STANDARD MANUAL							

ELECTROLYTIC CAPACITOR SPECIFICATION SF SERIES

				• • •				1	
		b. At-40 table.	°C (-25°C),	impedance (2	Z) ratio sl	hall not e	xceed the	value of	the following
			g Voltage (V	7) 6.3	10	16	25	35	50
			<u>g</u> voltage (v ∕Z+20°C	4	3	2	23	2	2
			/Z+20℃ /Z+20℃	8	6	4	3	3	3
4.7		2-40 C		0	0		5	5	5
		Workin	g Voltage (V	7) 63	100]			
		Z-25°C	/Z+20°C	2	2				
		Z-40°C	/Z+20°C	3	3				
		Capacita	ance, tan δ , a	and impedance	e shall be	e measure	ed at 120F	łz.	
4.8	Load life test	temper 5000+4 worki at atm <criter< b=""> The cha Leaka Capac tan δ</criter<>	ling to IEC6 rature of 105 48/0 hours. (' ng voltage) ' nospheric cor ia>	Then the productions. The all meet the formation of the second se	DC bias v C and rip luct shou result sho <u>collowing</u> in 4.3 sha $h \pm 25\%$ c ore than 2	roltage pl ple peak ld be teste ould meet requirem all be satistic of initial 200% of t	us the rate voltage sh ed after 10 the follow ments. sfied	ed ripple of nall not ex 6 hours re wing table ed value.	current for acceed the rated ecovering time e:
		for 1000 test chan they sha voltage	acitors are th +48/0 hours nber and be all be conne applied for 3	Following t allowed to s cted to a ser Omin. After	his perioc tabilized ries limiti	the capa at room ing resist	temperatu temperatu	all be rem tre for $4 \sim 00 \Omega$) with	e of $105 \pm 2^{\circ}$ C oved from the 8 hours. Nex th D.C. rated ged, and then
4.9	Shelf life test	Criter The cha	racteristic sh	all meet the f					
			ge current		$\frac{1}{10}$ $\frac{4.3 \text{ sha}}{250}$				
		tan δ	itance Chan	-	$\pm 25\%$ or $\pm 25\%$			ad value	
			arance				ne specific e of electr		
			c: If the capa	citors are sto ease apply vo	red more	than 1 ye	ar, the lea	ikage curi	•
	Na	ime		Specificati	on Sheet	E-SF			
	Version		01					Pag	je 9

STANDARD MANUAL

ELECTROLYTIC CAPACITOR SPECIFICATION SF SERIES

4.10	Surge test	<condition>Applied a surge voltage to the capacitor connected with a $(100 \pm 50)/C_R (k\Omega)$ resistor.The capacitor shall be submitted to 1000 cycles, each consisting of charge of 30 $\pm 5s$, followed discharge of 5 min 30s.The test temperature shall be $15\sim35^{\circ}$C.Cre :Nominal Capacitance (μ F)<</condition>
4.11	Vibration test	Condition> The following conditions shall be applied for 2 hours in each 3 mutually perpendicular directions. Vibration frequency range : 10Hz ~ 55Hz Peak to peak amplitude : 1.5mm Sweep rate : 10Hz ~ 55Hz ~ 10Hz in about 1 minute Mounting method: The capacitor with diameter greater than 12.5mm or longer than 25mm must be fixed in place with a bracket. <i>4mm or less Within 30° To be soldered</i>

Name		Specification Sheet –SF				
Version	01		Page	10		
STANDARD MANUAL						

ELECTROLYTIC CAPACITOR SPECIFICATION SF SERIES

		After the test, the follow	ving items shall be tested:
		Inner construction	No intermittent contacts, open or short circuiting. No damage of tab terminals or electrodes.
		Appearance	No mechanical damage in terminal. No leakage of electrolyte or swelling of the case. The markings shall be legible.
4.12	Solderability test	<condition> The capacitor shall be tes Soldering temperature Dipping depth Dipping speed Dipping time <criteria> Coating quality</criteria></condition>	ted under the following conditions: : 245±3°C : 2mm : 25±2.5mm/s : 3±0.5s A minimum of 95% of the surface being immersed
4.13	Resistance to solder heat test	260 ± 5 °C for 10 ± 1 second from the body of capacit	be left under the normal temperature and normal

Name		Specification Sheet –SF					
Version	01		Page	11			
STANDARD MANUAL							

ELECTROLYTIC CAPACITOR SPECIFICATION SF SERIES

4.14	Change of	Condition> Temperature Cycle: According to IEC60384-4No.4.7 methods, capacitor shall be placed in an oven, the condition according as below:TemperatureTime (1)+20°C(1)+20°C ≤ 3 Minutes(2)Rated low temperature(-40°C)(-25°C) 30 ± 2 Minutes(3)Rated high temperature (+105°C) 30 ± 2 Minutes(1) to (3)=1 cycle, total 5 cycle
4.14 temperature test		<criteria>The characteristic shall meet the following requirementLeakage currentNot more than the specified value.$\tan \delta$Not more than the specified value.AppearanceThere shall be no leakage of electrolyte.</criteria>
4.15	Damp heat test	<condition> Humidity Test: According to IEC60384-4No.4.12 methods, capacitor shall be exposed for 500 ± 8 hours in an atmosphere of $90 \sim 95\%$R H .at 40 ± 2°C, the characteristic change shall meet the following requirement.<criteria>Leakage currentNot more than the specified value. Capacitance Change Within $\pm 20\%$ of initial value. tan δtan δNot more than 120% of the specified value. AppearanceAppearanceThere shall be no leakage of electrolyte.</criteria></condition>

Name		Specification Sheet –SF				
Version	01		Page	12		
STANDARD MANUAL						

ELECTROLYTIC CAPACITOR SPECIFICATION SF SERIES

D.C. test The capacitor is connected a current selected from Table <table 3=""> Diameter (mm) DC Cu 22.4 or less <criteria> The vent shall operate with of pieces of the capacitor a The maximum permissible r at 100kHz and can be appli Table-1 The combined value of D.C</criteria></table>	urrent (A) 1 n no danger ind/or case.	olied. Tous condition	ions such a aximum A	s flames or .C current	dispersion
Diameter (mm) DC Cu 22.4 or less 22.4 or less <criteria> The vent shall operate with of pieces of the capacitor a of pieces of the capacitor a</criteria>	1 n no danger und/or case.	ent is the m	aximum A	.C current	
The vent shall operate with of pieces of the capacitor a The maximum permissible rat 100kHz and can be applin Table-1	nd/or case.	ent is the m	aximum A	.C current	
The maximum permissible at 100kHz and can be appli Table-1					
rated voltage and shall not		nd the peak			exceed the
Frequency Multipliers: Coefficient Freq. (Hz) Cap. (µF)		120	300	1k	100k
15~33	0.45	0.55	0.70	0.90	1.00
39~330	0.60	0.70	0.85	0.95	1.00
					1.00 1.00
n e	e Coefficient Freq. (Hz) Cap. (μ F) 15~33	$\begin{array}{c c} Coefficient & Freq. \\ (Hz) & 50 \\ \hline Cap. (\mu F) & \\ \hline 15 \sim 33 & 0.45 \\ \hline 39 \sim 330 & 0.60 \\ \hline 470 \sim 1000 & 0.65 \end{array}$	$\begin{array}{c cccc} & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Name		Specification Sheet –SF				
Version	01		Page	13		
STANDARD MANUAL						

compounds Short-chain chlorinated paraffins(SCCP) Other chlorinated organic compounds Brominated organic compounds Polybrominated biphenyls (PBB) Polybrominated diphenylethers(PBDE) (including decabromodiphe ether[DecaBDE]) Other brominated organic compounds Tributyltin compounds(TBT) Triphenyltin compounds(TPT) Asbestos Specific azo compounds		Subsstandard"(WI-HSPM-QA-072).				
Heavy metals Mercury and mercury compounds Mercury and mercury compounds Hexavalent chromium compounds Polychlorinated biphenyls (PCB) Polychlorinated naphthalenes (PCN) organic Polychlorinated terphenyls (PCT) compounds Short-chain chlorinated paraffins(SCCP) Other chlorinated organic compounds Polybrominated biphenyls (PBB) Polybrominated diphenylethers(PBDE) (including decabromodiphe ether[DecaBDE]) Other brominated organic compounds Tributyltin compounds(TBT) Triphenyltin compounds(TPT) Asbestos Specific azo compounds		Cadmium and cadmium compounds				
Mercury and mercury compoundsHexavalent chromium compoundsPolychlorinated biphenyls (PCB)Polychlorinated naphthalenes (PCN)organicPolychlorinated terphenyls (PCT)compoundsShort-chain chlorinated paraffins(SCCP)Other chlorinated organic compoundsPolybrominated biphenyls (PBB)Polybrominated diphenylethers(PBDE) (including decabromodiphe ether[DecaBDE])Other brominated organic compoundsTributyltin compounds(TBT)Triphenyltin compounds(TPT)AsbestosSpecific azo compounds	Heavy metals	Lead and lead compounds				
Chloinated Polychlorinated biphenyls (PCB) Polychlorinated naphthalenes (PCN) organic Polychlorinated terphenyls (PCT) compounds Short-chain chlorinated paraffins(SCCP) Other chlorinated organic compounds Polybrominated biphenyls (PBB) Brominated organic compounds Polybrominated diphenylethers(PBDE) (including decabromodiphe ether[DecaBDE]) Other brominated organic compounds Other brominated organic compounds Tributyltin compounds(TBT) Triphenyltin compounds(TPT) Asbestos Specific azo compounds		Mercury and mercury compounds				
Chloinated Polychlorinated naphthalenes (PCN) organic Polychlorinated terphenyls (PCT) compounds Short-chain chlorinated paraffins(SCCP) Other chlorinated organic compounds Other chlorinated biphenyls (PBB) Brominated Polybrominated diphenylethers(PBDE) (including decabromodiphe ether[DecaBDE]) Other brominated organic compounds Other brominated organic compounds Tributyltin compounds(TBT) Triphenyltin compounds(TPT) Asbestos Specific azo compounds		Hexavalent chromium compounds				
organic compoundsPolychlorinated terphenyls (PCT)Short-chain chlorinated paraffins(SCCP)Other chlorinated organic compoundsPolybrominated biphenyls (PBB)Brominated organic compoundsPolybrominated diphenylethers(PBDE) (including decabromodiphe ether[DecaBDE])Other brominated organic compoundsTributyltin compounds(TBT)Triphenyltin compounds(TPT)AsbestosSpecific azo compounds		Polychlorinated biphenyls (PCB)				
compounds Short-chain chlorinated paraffins(SCCP) Other chlorinated organic compounds Brominated organic compounds Polybrominated biphenyls (PBB) Polybrominated diphenylethers(PBDE) (including decabromodiphe ether[DecaBDE]) Other brominated organic compounds Tributyltin compounds(TBT) Triphenyltin compounds(TPT) Asbestos Specific azo compounds	Chloinated	Polychlorinated naphthalenes (PCN)				
Other chlorinated organic compounds Brominated Polybrominated biphenyls (PBB) organic Polybrominated diphenylethers(PBDE) (including decabromodiphe compounds Other brominated organic compounds Tributyltin compounds(TBT) Other brominated organic compounds Asbestos Specific azo compounds	organic	Polychlorinated terphenyls (PCT)				
Brominated Polybrominated biphenyls (PBB) organic Polybrominated diphenylethers(PBDE) (including decabromodiphe compounds ether[DecaBDE]) Other brominated organic compounds Tributyltin compounds(TBT) Triphenyltin compounds(TPT) Asbestos Specific azo compounds	compounds	Short-chain chlorinated paraffins(SCCP)				
Brominated Polybrominated diphenylethers(PBDE) (including decabromodiphe ether[DecaBDE]) compounds Other brominated organic compounds Tributyltin compounds(TBT) Triphenyltin compounds(TPT) Asbestos Specific azo compounds		Other chlorinated organic compounds				
organic compoundsPolybrominated diphenylethers(PBDE) (including decabromodiphe ether[DecaBDE])Other brominated organic compoundsTributyltin compounds(TBT)Triphenyltin compounds(TPT)AsbestosSpecific azo compounds	D · (1	Polybrominated biphenyls (PBB)				
compounds ether[DecaBDE]) Other brominated organic compounds Tributyltin compounds(TBT) Triphenyltin compounds(TPT) Asbestos Specific azo compounds		Polybrominated diphenylethers(PBDE) (including decabromodiphenyl				
Other brominated organic compounds Tributyltin compounds(TBT) Triphenyltin compounds(TPT) Asbestos Specific azo compounds	-	ether[DecaBDE])				
Triphenyltin compounds(TPT) Asbestos Specific azo compounds	compounds	Other brominated organic compounds				
Asbestos Specific azo compounds	Tributyltin comp	ounds(TBT)				
Specific azo compounds	Triphenyltin com	pounds(TPT)				
	Asbestos					
Formaldahyda	Specific azo com	pounds				
Folmaldenyde	Formaldehyde					
Beryllium oxide	Beryllium oxide					
Beryllium copper	Beryllium copp	er				
Specific phthalates (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)	Specific phthalat	es (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)				
Hydrofluorocarbon (HFC), Perfluorocarbon (PFC)	Hydrofluorocarbo	on (HFC), Perfluorocarbon (PFC)				
Perfluorooctane sulfonates (PFOS)	Perfluorooctane s	sulfonates (PFOS)				

Name		Specification Sheet –SF					
Version	01		Page	14			
STANDARD MANUAL							

SAMXON

Attachment: Application Guidelines

1.Circuit Design

1.1 Operating Temperature and Frequency

Electrolytic capacitor electrical parameters are normally specified at 20° C temperature and 120Hz frequency. These parameters vary with changes in temperature and frequency. Circuit designers should take these changes into consideration.

- (1) Effects of operating temperature on electrical parameters
 - a) At higher temperatures, leakage current and capacitance increase while equivalent series resistance (ESR) decreases.
 - b) At lower temperatures, leakage current and capacitance decrease while equivalent series resistance (ESR) increases.
- (2) Effects of frequency on electrical parameters
 - a) At higher frequencies capacitance and impedance decrease while tan δ increases.
 - b) At lower frequencies, ripple current generated heat will rise due to an increase in equivalent series resistance (ESR).
- 1.2 Operating Temperature and Life Expectancy See the file: Life calculation of aluminum electrolytic capacitor
- 1.3 Common Application Conditions to Avoid The following misapplication load conditions will cause rapid deterioration to capacitor electrical parameters. In addition, rapid heating and gas generation within the capacitor can occur causing the pressure relief vent to operate and resultant leakage of electrolyte. Under Leaking electrolyte is combustible and electrically conductive.

Name		Specification Sheet –SF					
Version	01		Page	15			
STANDARD MANUAL							

(1) Reverse Voltage

DC capacitors have polarity. Verify correct polarity before insertion. For circuits with changing or uncertain polarity, use DC bipolar capacitors. DC bipolar capacitors are not suitable for use in AC circuits.

(2) Charge / Discharge Applications

Standard capacitors are not suitable for use in repeating charge / discharge applications. For charge / discharge applications consult us and advise actual conditions.

(3) Over voltage

Do not apply voltages exceeding the maximum specified rated voltage. Voltages up to the surge voltage rating are acceptable for short periods of time. Ensure that the sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage.

(4) Ripple Current

Do not apply ripple currents exceeding the maximum specified value. For high ripple current applications, use a capacitor designed for high ripple currents or contact us with your requirements. Ensure that allowable ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions.

- 1.4 Using Two or More Capacitors in Series or Parallel
- (1) Capacitors Connected in Parallel

The circuit resistance can closely approximate the series resistance of the capacitor causing an imbalance of ripple current loads within the capacitors. Careful design of wiring methods can minimize the possibility of excessive ripple currents applied to a capacitor.

- (2) Capacitors Connected in Series Normal DC leakage current differences among capacitors can cause voltage imbalances. The use of voltage divider shunt resistors with consideration to leakage current can prevent capacitor voltage imbalances.
- 1.5 Capacitor Mounting Considerations
- (1) Double Sided Circuit Boards

Avoid wiring pattern runs, which pass between the mounted capacitor and the circuit board. When dipping into a solder bath, excess solder may collect under the capacitor by capillary action and short circuit the anode and cathode terminals.

(2)Circuit Board Hole Positioning

The vinyl sleeve of the capacitor can be damaged if solder passes through a lead hole for subsequently processed parts. Special care when locating hole positions in proximity to capacitors is recommended.

(3)Circuit Board Hole Spacing

The circuit board holes spacing should match the capacitor lead wire spacing within the specified tolerances. Incorrect spacing can cause excessive lead wire stress during the insertion process. This may result in premature capacitor failure due to short or open circuit, increased leakage current, or electrolyte leakage.

Name		Specification Sheet –SF					
Version	01		Page	16			
STANDARD MANUAL							

 (4) Clearance for Case Mounted Pressure Relief vents Capacitors with case mounted pressure relief vents require sufficient clearance to allow for proper vent operation. The minimum clearances are dependent on capacitor diameters as proper vent operation. The minimum clearances are dependent on capacitor diameters as follows. Φ 6.3~ Φ 16mm:2mm minimum, Φ 18~ Φ 35mm:3mm minimum, Φ 40mm or greater:5mm minimum.
(5) Clearance for Seal Mounted Pressure Relief VentsA hole in the circuit board directly under the seal vent location is required to allow proper release of pressure.
(6) Wiring Near the Pressure Relief Vent Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief vent. Flammable, high temperature gas exceeding 100°C may be released which could dissolve the wire insulation and ignite.
 (7) Circuit Board patterns Under the Capacitor Avoid circuit board runs under the capacitor as electrolyte leakage could cause an electrical short.
 (8) Screw Terminal Capacitor Mounting Do not orient the capacitor with the screw terminal side of the capacitor facing downwards. Tighten the terminal and mounting bracket screws within the torque range specified in the specification.
 Electrical Isolation of the Capacitor Completely isolate the capacitor as follows. Between the cathode and the case (except for axially leaded B types) and between the anode terminal and other circuit paths Between the extra mounting terminals (on T types) and the anode terminal, cathode terminal, and other circuit paths.
1.7 The Product endurance should take the sample as the standard.
1.8 If conduct the load or shelf life test, must be collect date code within 6 months products of sampling.
1.9 Capacitor Sleeve The vinyl sleeve or laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor. The sleeve may split or crack if immersed into solvents such as toluene or xylene, and then exposed to high temperatures.
CAUTION! Always consider safety when designing equipment and circuits. Plan for worst case failure modes such as short circuits and open circuits which could occur during use. (1) Provide protection circuits and protection devices to allow safe failure modes. (2) Design redundant or secondary circuits where possible to assure continued operation in case of main circuit failure.

Name		Specification Sheet –SF				
Version	01		Page	17		
STANDARD MANUAL						

2. Capacitor Handling Techniques

- 2.1 Considerations Before Using
- (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment.
- (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about $1k \Omega$.
- (3) Capacitors stored for long periods of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1k \Omega$.
- (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors.
- (5) Dented or crushed capacitors should not be used. The seal integrity can be compromised and loss of electrolyte / shortened life can result.
- 2.2 Capacitor Insertion
- * (1) Verify the correct capacitance and rated voltage of the capacitor.
- * (2) Verify the correct polarity of the capacitor before inserting.
- * (3) Verify the correct hole spacing before insertion (land pattern size on chip type) to avoid stress on the terminals.
 (4) Ensure that the auto insertion equipment lead clinching operation does not stress the capacitor leads where they enter the seal of the capacitor.

For chip type capacitors, excessive mounting pressure can cause high leakage current, short circuit, or disconnection.

2.3 Manual Soldering

- (1) Observe temperature and time soldering specifications or do not exceed temperatures of 400 $^{\circ}$ C for 3 seconds or less.
- (2) If lead wires must be formed to meet terminal board hole spacing, avoid stress on the lead wire where it enters the capacitor seal.
- (3) If a soldered capacitor must be removed and reinserted, avoid excessive stress to the capacitor leads.
- (4) Avoid touching the tip of the soldering iron to the capacitor, to prevent melting of the vinyl sleeve.

2.4 Flow Soldering

- (1) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result.
- (2) Observe proper soldering conditions (temperature, time, etc.) Do not exceed the specified limits.
- (3) Do not allow other parts or components to touch the capacitor during soldering.

2.5 Other Soldering Considerations

Rapid temperature rises during the preheat operation and resin bonding operation can cause cracking of the capacitor vinyl sleeve.

For heat curing, do not exceed 150°C for a maximum time of 2 minutes.

Name		Specification Sheet –SF					
Version	01		Page	18			
STANDARD MANUAL							

2.6 Capacitor Handling after Solder

- (1). Avoid movement of the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal.
- (2). Do not use capacitor as a handle when moving the circuit board assembly.
- (3). Avoid striking the capacitor after assembly to prevent failure due to excessive shock.

2.7 Circuit Board Cleaning

- * (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up 5 minutes and up to 60°C maximum temperatures. The boards should be thoroughly rinsed and dried.
- The use of ozone depleting cleaning agents is not recommended in the interest of protecting the environment.
- * (2) Avoid using the following solvent groups unless specifically allowed for in the specification;
- Halogenated cleaning solvents: except for solvent resistant capacitor types, halogenated solvents can permeate the seal and cause internal capacitor corrosion and failure. For solvent resistant capacitors, carefully follow the temperature and time requirements of the specification. 1-1-1 trichloroethane should never be used on any aluminum electrolytic capacitor.
- . Alkali solvents : could attack and dissolve the aluminum case.
- . Petroleum based solvents: deterioration of the rubber seal could result.
- . Xylene : deterioration of the rubber seal could result.
- Acetone : removal of the ink markings on the vinyl sleeve could result.
- * (3) A thorough drying after cleaning is required to remove residual cleaning solvents which may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the maximum rated temperature of the capacitor.
- * (4) Monitor the contamination levels of the cleaning solvents during use by electrical conductivity, pH, specific gravity, or water content. Chlorine levels can rise with contamination and adversely affect the performance of the capacitor.

Please consult us for additional information about acceptable cleaning solvents or cleaning methods.

2.8 Mounting Adhesives and Coating Agents

When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers.

After applying adhesives or coatings, dry thoroughly to prevent residual solvents from being trapped between the capacitor and the circuit board.

3. Precautions for using capacitors

3.1 Environmental Conditions

- Capacitors should not be stored or used in the following environments.
- * (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- * (2) Direct contact with water, salt water, or oil.
- * (3) High humidity conditions where water could condense on the capacitor.

Name		Specification Sheet –SF					
Version	01		Page	19			
STANDARD MANUAL							

- * (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid chlorine, or ammonia.
- * (5) Exposure to ozone, radiation, or ultraviolet rays.
- * (6) Vibration and shock conditions exceeding specified requirements.

3.2 Electrical Precautions

- (1) Avoid touching the terminals of the capacitor as possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched.
- (2) Avoid short circuit the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions.

4. Emergency Procedures

- (1) If the pressure relief vent of the capacitor operates, immediately turn off the equipment and disconnect form the power source. This will minimize additional damage caused by the vaporizing electrolyte.
- (2) Avoid contact with the escaping electrolyte gas which can exceed 100°C temperatures. If electrolyte or gas enters the eye, immediately flush the eyes with large amounts of water. If electrolyte or gas is ingested by month, gargle with water. If electrolyte contacts the skin, wash with soap and water.

5. Long Term Storage

Leakage current of a capacitor increases with long storage times. The aluminum oxide film deteriorates as a function of temperature and time. If used without reconditioning, an abnormally high current will be required to restore the oxide film. This current surge could cause the circuit or the capacitor to fail.

After one year, a capacitor should be reconditioned by applying rated voltage in series with a 1000Ω , current limiting resistor for a time period of 30 minutes .

If the expired date of products date code is over eighteen months, the products should be return to confirmation. 5.1 Environmental Conditions

The capacitor shall be not use in the following condition:

- (1) Temperature exposure above the maximum rated or below the minimum rated temperature of the capacitor.
- (2) Direct contact with water, salt water, or oil.
- (3) High humidity conditions where water could condense on the capacitor.
- (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, or ammonia.
- (5) Exposure to ozone, radiation, or ultraviolet rays.
- (6) Vibration and shock conditions exceeding specified requirements.

6. Capacitor Disposal

When disposing of capacitors, use one of the following methods.

* Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). Capacitors should be incinerated at high temperatures to prevent the release of toxic gases such as chlorine from the polyvinyl chloride sleeve, etc.

* Dispose of as solid waste. NOTE: Local laws may have specific disposal requirements, which must be followed.

Name		Specification Sheet –SF		
Version	01		Page	20
STANDARD MANUAL				